Limits on Instruction-Level
Parallelism

Processors are being produced with the potential for very many
parallel operations on the instruction level.....Far greater extremes in
instruction-level parallelism are on the horizon.

J. Fisher
(1981),in the paper that inaugurated
the term “instruction-level parallelism”

One of the surprises about IA-64 is that we hear no claims of high
frequency, despite claims that an EPIC processor is less complex than
a superscalar processor. It's hard to know why this is so, but one can
speculate that the overall complexity involved in focusing on CPl,as
IA-64 does, makes it hard to get high megahertz.

M. Hopkins

(2000),in a commentary on the IA-64 architecture,

a joint development of HP and Intel designed to achieve dra-
matic increases in the exploitation

of ILP while retaining a simple architecture,

which would allow higher performance
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3.1

3.2

Introduction

As we indicated in the last chapter, exploiting ILP was the primary focus of pro-
cessor designs for about 20 years starting in the mid-1980s. For the first 15 years,
we saw a progression of successively more sophisticated schemes for pipelining,
multiple issue, dynamic scheduling and speculation. Since 2000, designers have
focused primarily on optimizing designs or trying to achieve higher clock rates
without increasing issue rates. As we indicated in the close of the last chapter,
this era of advances in exploiting ILP appears to be coming to an end.

In this chapter we begin by examining the limitations on ILP from program
structure, from realistic assumptions about hardware budgets, and from the accu-
racy of important techniques for speculation such as branch prediction. In Sec-
tion 3.5, we examine the use of thread-level parallelism as an alternative or
addition to instruction-level parallelism. Finally, we conclude the chapter by
comparing a set of recent processors both in performance and in efficiency mea-
sures per transistor and per watt.

Studies of the Limitations of ILP

Exploiting ILP to increase performance began with the first pipelined processors
in the 1960s. In the 1980s and 1990s, these techniques were key to achieving
rapid performance improvements. The question of how much ILP exists was
critical to our long-term ability to enhance performance at a rate that exceeds the
increase in speed of the base integrated circuit technology. On a shorter scale, the
critical question of what is needed to exploit more ILP is crucial to both com-
puter designers and compiler writers. The data in this section also provide us with
a way to examine the value of ideas that we have introduced in the last chapter,
including memory disambiguation, register renaming, and speculation.

In this section we review one of the studies done of these questions. The his-
torical perspectives section in Appendix K describes several studies, including
the source for the data in this section (Wall’s 1993 study). All these studies of
available parallelism operate by making a set of assumptions and seeing how
much parallelism is available under those assumptions. The data we examine
here are from a study that makes the fewest assumptions; in fact, the ultimate
hardware model is probably unrealizable. Nonetheless, all such studies assume a
certain level of compiler technology, and some of these assumptions could affect
the results, despite the use of incredibly ambitious hardware.

In the future, advances in compiler technology together with significantly
new and different hardware techniques may be able to overcome some limitations
assumed in these studies; however, it is unlikely that such advances when coupled
with realistic hardware will overcome these limits in the near future. For exam-
ple, value prediction, which we examined in the last chapter, can remove data
dependence limits. For value prediction to have a significant impact on perfor-
mance, however, predictors would need to achieve far higher prediction accuracy
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than has so far been reported. Indeed for reasons we discuss in Section 3.6, we
are likely reaching the limits of how much ILP can be exploited efficiently. This
section will lay the groundwork to understand why this is the case.

The Hardware Model

To see what the limits of ILP might be, we first need to define an ideal processor.
An ideal processor is one where all constraints on ILP are removed. The only
limits on ILP in such a processor are those imposed by the actual data flows
through either registers or memory.

The assumptions made for an ideal or perfect processor are as follows:

1. Register renaming—There are an infinite number of virtual registers avail-
able, and hence all WAW and WAR hazards are avoided and an unbounded
number of instructions can begin execution simultaneously.

2. Branch prediction—Branch prediction is perfect. All conditional branches
are predicted exactly.

3. Jump prediction—All jumps (including jump register used for return and
computed jumps) are perfectly predicted. When combined with perfect
branch prediction, this is equivalent to having a processor with perfect specu-
lation and an unbounded buffer of instructions available for execution.

4. Memory address alias analysis—All memory addresses are known exactly,
and a load can be moved before a store provided that the addresses are not
identical. Note that this implements perfect address alias analysis.

5. Perfect caches—All memory accesses take 1 clock cycle. In practice, super-
scalar processors will typically consume large amounts of ILP hiding cache
misses, making these results highly optimistic.

Assumptions 2 and 3 eliminate all control dependences. Likewise, assump-
tions 1 and 4 eliminate all but the true data dependences. Together, these four
assumptions mean that any instruction in the program’s execution can be sched-
uled on the cycle immediately following the execution of the predecessor on
which it depends. It is even possible, under these assumptions, for the last
dynamically executed instruction in the program to be scheduled on the very first
cycle! Thus, this set of assumptions subsumes both control and address specula-
tion and implements them as if they were perfect.

Initially, we examine a processor that can issue an unlimited number of
instructions at once looking arbitrarily far ahead in the computation. For all the
processor models we examine, there are no restrictions on what types of instruc-
tions can execute in a cycle. For the unlimited-issue case, this means there may
be an unlimited number of loads or stores issuing in 1 clock cycle. In addition, all
functional unit latencies are assumed to be 1 cycle, so that any sequence of
dependent instructions can issue on successive cycles. Latencies longer than 1
cycle would decrease the number of issues per cycle, although not the number of
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instructions under execution at any point. (The instructions in execution at any
point are often referred to as in flight.)

Of course, this processor is on the edge of unrealizable. For example, the
IBM Powers5 is one of the most advanced superscalar processors announced to
date. The Power5 issues up to four instructions per clock and initiates execution
on up to six (with significant restrictions on the instruction type, e.g., at most two
load-stores), supports a large set of renaming registers (88 integer and 88 floating
point, allowing over 200 instructions in flight, of which up to 32 can be loads and
32 can be stores), uses a large aggressive branch predictor, and employs dynamic
memory disambiguation. After looking at the parallelism available for the perfect
processor, we will examine the impact of restricting various features.

To measure the available parallelism, a set of programs was compiled and
optimized with the standard MIPS optimizing compilers. The programs were
instrumented and executed to produce a trace of the instruction and data refer-
ences. Every instruction in the trace is then scheduled as early as possible, limited
only by the data dependences. Since a trace is used, perfect branch prediction and
perfect alias analysis are easy to do. With these mechanisms, instructions may be
scheduled much earlier than they would otherwise, moving across large numbers
of instructions on which they are not data dependent, including branches. since
branches are perfectly predicted.

Figure 3.1 shows the average amount of parallelism available for six of the
SPEC92 benchmarks. Throughout this section the parallelism is measured by the
average instruction issue rate. Remember that all instructions have a l-cycle
latency; a longer latency would reduce the average number of instructions per
clock. Three of these benchmarks (fpppp, doduc, and tomcatv) are fioating-point
intensive, and the other three are integer programs. Two of the floating-point
benchmarks (fpppp and tomcatv) have extensive parallelism, which could be
exploited by a vector computer or by a multiprocessor (the structure in fpppp is
quite messy, however, since some hand transformations have been done on the
code). The doduc program has extensive parallelism, but the parallelism does not
occur in simple parallel loops as it does in fpppp and tomcatv. The program li is a
LISP interpreter that has many short dependences.

In the next few sections, we restrict various aspects of this processor to show
what the effects of various assumptions are before looking at some ambitious but
realizable processors.

Limitations on the Window Size and Maximum Issue Count

To build a processor that even comes close to perfect branch prediction and per-
fect alias analysis requires extensive dynamic analysis, since static compile time
schemes cannot be perfect. Of course, most realistic dynamic schemes will not be
perfect, but the use of dynamic schemes will provide the ability to uncover paral-
lelism that cannot be analyzed by static compile time analysis. Thus, a dynamic
processor might be able to more closely match the amount of parallelism uncov-
ered by our ideal processor.
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Figure 3.1 ILP available in a perfect processor for six of the SPEC92 benchmarks.The
first three programs are integer programs, and the last three are floating-point
programs. The floating-point programs are loop-intensive and have large amounts of
loop-level parallelism.

How close could a real dynamically scheduled, speculative processor come to
the ideal processor? To gain insight into this question, consider what the perfect
processor must do:

1. Look arbitrarily far ahead to find a set of instructions to issue, predicting all
branches perfectly.

2. Rename ail register uses to avoid WAR and WAW hazards.

Determine whether there are any data dependences among the instructions in
the issue packet; if so, rename accordingly.

4. Determine if any memory dependences exist among the issuing instructions
and handle them appropriately.

5. Provide enough replicated functional units to allow all the ready instructions
to issue.

Obviously, this analysis is quite complicated. For example, to determine
whether n issuing instructions have any register dependences among them,
assuming all instructions are register-register and the total number of registers is
unbounded, requires

n-1
2m-2+2m-a+. .. +2=2Y, i=2ZDr_ 2,

comparisons. Thus, to detect dependences among the next 2000 instructions—the
default size we assume in several figures—requires almost 4 million comparisons!
Even issuing only 50 instructions requires 2450 comparisons. This cost obviously
limits the number of instructions that can be considered for issue at once.

In existing and near-term processors, the costs are not quite so high, since we
need only detect dependence pairs and the limited number of registers allows dif-
ferent solutions. Furthermore, in a real processor, issue occurs in order, and
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dependent instructions are handled by a renaming process that accommodates
dependent renaming in 1 clock. Once instructions are issued, the detection of
dependences is handled in a distributed fashion by the reservation stations or
scoreboard.

The set of instructions that is examined for simultaneous execution is called
the window. Each instruction in the window must be kept in the processor, and
the number of comparisons required every clock is equal to the maximum com-
pletion rate times the window size times the number of operands per instruction
(today up to 6 x 200 X 2 = 2400), since every pending instruction must look at
every completing instruction for either of its operands. Thus, the total window
size is limited by the required storage, the comparisons, and a limited issue rate,
which makes a larger window less helpful. Remember that even though existing
processors allow hundreds of instructions to be in flight, because they cannot
issue and rename more than a handful in any clock cycle, the maximum through-
out is likely to be limited by the issue rate. For example, if the instruction stream
contained totally independent instructions that all hit in the cache, a large window
would simply never fill. The value of having a window larger than the issue rate
occurs when there are dependences or cache misses in the instruction stream.

The window size directly limits the number of instructions that begin exe-
cution in a given cycle. In practice, real processors will have a more limited
number of functional units (e.g., no superscalar processor has handled more
than two memory references per clock), as well as limited numbers of buses
and register access ports, which serve as limits on the number of instructions
initiated per clock. Thus, the maximum number of instructions that may issue,
begin execution, or commit in the same clock cycle is usually much smaller
than the window size.

Obviously, the number of possible implementation constraints in a multiple-
issue processor is large, including issues per clock, functional units and unit
latency, register file ports, functional unit queues (which may be fewer than
units), issue limits for branches, and limitations on instruction commit. Each of
these acts as a constraint on the ILP. Rather than try to understand each of these
effects, however, we will focus on limiting the size of the window, with the
understanding that all other restrictions would further reduce the amount of paral-
lelism that can be exploited.

Figure 3.2 shows the effects of restricting the size of the window from which
an instruction can execute. As we can see in Figure 3.2, the amount of parallelism
uncovered falls sharply with decreasing window size. In 2005, the most advanced
processors have window sizes in the range of 64-200, but these window sizes are
not strictly comparable to those shown in Figure 3.2 for two reasons. First, many
functional units have multicycle latency, reducing the effective window size com-
pared to the case where all units have single-cycle latency. Second, in real proces-
sors the window must also hold any memory references waiting on a cache miss,
which are not considered in this model, since it assumes a perfect, single-cycle
cache access.
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Figure 3.2 The effect of window size shown by each application by plotting the
average number of instruction issues per clock cycle.

As we can see in Figure 3.2, the integer programs do not contain nearly as
much parallelism as the floating-point programs. This result is to be expected.
Looking at how the parallelism drops off in Figure 3.2 makes it clear that the par-
allelism in the floating-point cases is coming from loop-level parallelism. The
fact that the amount of parallelism at low window sizes is not that different
among the floating-point and integer programs implies a structure where there are
dependences within loop bodies, but few dependences between loop iterations in
programs such as tomcatv. At small window sizes, the processors simply cannot
see the instructions in the next loop iteration that could be issued in parallel with
instructions from the current iteration. This case is an example of where better
compiler technology (see Appendix G) could uncover higher amounts of ILP,
since it could find the loop-level parallelism and schedule the code to take advan-
tage of it, even with small window sizes.

We know that very large window sizes are impractical and inefficient, and
the data in Figure 3.2 tells us that instruction throughput will be considerably
reduced with realistic implementations. Thus, we will assume a base window
size of 2K entries, roughly 10 times as large as the largest implementation in
2005, and a maximum issue capability of 64 instructions per clock, also 10
times the widest issue processor in 2005, for the rest of this analysis. As we will
see in the next few sections, when the rest of the processor is not perfect, a 2K



160 = Chapter Three Limits on Instruction-Level Parallelism

window and a 64-issue limitation do not constrain the amount of ILP the proces-
sor can exploit.

The Effects of Realistic Branch and Jump Prediction

Our ideal processor assumes that branches can be perfectly predicted: The out-
come of any branch in the program is known before the first instruction is exe-
cuted! Of course, no real processor can ever achieve this. Figure 3.3 shows the
effects of more realistic prediction schemes in two different formats. Our data are
for several different branch-prediction schemes, varying from perfect to no pre-
dictor. We assume a separate predictor is used for jumps. Jump predictors are
important primarily with the most accurate branch predictors, since the branch
frequency is higher and the accuracy of the branch predictors dominates.
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Figure 3.3 The effect of branch-prediction schemes sorted by application. This
graph shows the impact of going from a perfect model of branch prediction (all
branches predicted correctly arbitrarily far ahead); to various dynamic predictors (selec-
tive and 2-bit); to compile time, profile-based prediction; and finally to using no predic-
tor. The predictors are described precisely in the text. This graph highlights the
differences among the programs with extensive loop-level parallelism (tomcatv and
fpppp) and those without (the integer programs and doduc).



3.2 Studies of the Limitations of ILP = 161

The five levels of branch prediction shown in these figure are

1. Perfect—All branches and jumps are perfectly predicted at the start of execu-
tion.

2. Tournament-based branch predictor—The prediction scheme uses a correlat-
ing 2-bit predictor and a noncorrelating 2-bit predictor together with a selec-
tor, which chooses the best predictor for each branch. The prediction buffer
contains 213 (8K) entries, each consisting of three 2-bit fields, two of which
are predictors and the third a selector. The correlating predictor is indexed
using the exclusive-or of the branch address and the global branch history.
The noncorrelating predictor is the standard 2-bit predictor indexed by the
branch address. The selector table is also indexed by the branch address and
specifies whether the correlating or noncorrelating predictor should be used.
The selector is incremented or decremented just as we would for a standard 2-
bit predictor. This predictor, which uses a total of 48K bits, achieves an aver-
age misprediction rate of 3% for these six SPEC92 benchmarks and is com-
parable in strategy and size to the best predictors in use in 2005. Jump
prediction is done with a pair of 2K-entry predictors, one organized as a cir-
cular buffer for predicting returns and one organized as a standard predictor
and used for computed jumps (as in case statements or computed gotos).
These jump predictors are nearly perfect.

3. Standard 2-bit predictor with 512 2-bit entries—In addition, we assume a 16-
entry buffer to predict returns.

4. Profile-based—A static predictor uses the profile history of the program and
predicts that the branch is always taken or always not taken based on the
profile.

5. None—No branch prediction is used, though jumps are still predicted. Paral-
lelism is largely limited to within a basic block.

Since we do not charge additional cycles for a mispredicted branch, the only
effect of varying the branch prediction is to vary the amount of parallelism that
can be exploited across basic blocks by speculation. Figure 3.4 shows the accu-
racy of the three realistic predictors for the conditional branches for the subset of
SPEC92 benchmarks we include here.

Figure 3.3 shows that the branch behavior of two of the floating-point
programs is much simpler than the other programs, primarily because these two
programs have many fewer branches and the few branches that exist are more
predictable. This property allows significant amounts of parallelism to be
exploited with realistic prediction schemes. In contrast, for all the integer pro-
grams and for doduc, the FP benchmark with the least loop-level parallelism,
even the difference between perfect branch prediction and the ambitious selective
predictor is dramatic. Like the window size data, these figures tell us that to
achieve significant amounts of parallelism in integer programs, the processor
must select and execute instructions that are widely separated. When branch
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Figure 3.4 Branch misprediction rate for the conditional branches in the SPEC92
subset.

prediction is not highly accurate, the mispredicted branches become a barrier to
finding the parallelism.

As we have seen, branch prediction is critical, especially with a window size
of 2K instructions and an issue limit of 64. For the rest of this section, in addition
to the window and issue limit, we assume as a base a more ambitious tournament
predictor that uses two levels of prediction and a total of 8K entries. This predic-
tor, which requires more than 150K bits of storage (roughly four times the largest
predictor to date), slightly outperforms the selective predictor described above
(by about 0.5-1%). We also assume a pair of 2K jump and return predictors, as
described above.

The Effects of Finite Registers

Our ideal processor eliminates all name dependences among register references
using an infinite set of virtual registers. To date, the IBM Power5 has provided
the largest numbers of virtual registers: 88 additional floating-point and 88 addi-
tional integer registers, in addition to the 64 registers available in the base archi-
tecture. All 240 registers are shared by two threads when executing in
multithreading mode (see Section 3.5), and all are available to a single thread
when in single-thread mode. Figure 3.5 shows the effect of reducing the number
of registers available for renaming; both the FP and GP registers are increased by
the number of registers shown in the legend.
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Figure 3.5 The reduction in available parallelism is significant when fewer than an
unbounded number of renaming registers are available.Both the number of FP regis-
ters and the number of GP registers are increased by the number shown on the x-axis.
So, the entry corresponding to “128 integer + 128 FP” has a total of 128 + 128 + 64 =
320 registers (128 for integer renaming, 128 for FP renaming, and 64 integer and FP reg-
isters present in the MIPS architecture). The effect is most dramatic on the FP programs,
although having only 32 extra integer and 32 extra FP registers has a significant impact
on all the programs. For the integer programs, the impact of having more than 64 extra
registers is not seen here.To use more than 64 registers requires uncovering lots of par-
allelism, which for the integer programs requires essentially perfect branch prediction.

The results in this figure might seem somewhat surprising: You might expect
that name dependences should only slightly reduce the parallelism available.
Remember though, that exploiting large amounts of parallelism requires evaluat-
ing many possible execution paths, speculatively. Thus, many registers are needed
to hold live variables from these threads. Figure 3.5 shows that the impact of hav-
ing only a finite number of registers is significant if extensive parallelism exists.
Although this graph shows a large impact on the floating-point programs, the
impact on the integer programs is small primarily because the limitations in win-
dow size and branch prediction have limited the ILP substantially, making renam-
ing less valuable. In addition, notice that the reduction in available parallelism is
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significant even if 64 additional integer and 64 additional FP registers are available
for renaming, which is comparable to the number of extra registers available on
any existing processor as of 2005.

Although register renaming is obviously critical to performance, an infinite
number of registers is not practical. Thus, for the next section, we assume that
there are 256 integer and 256 FP registers available for renaming—far more than
any anticipated processor has as of 2005.

The Effects of Imperfect Alias Analysis

Our optimal model assumes that it can perfectly analyze all memory depen-
dences, as well as eliminate all register name dependences. Of course, perfect
alias analysis is not possible in practice: The analysis cannot be perfect at com-
pile time, and it requires a potentially unbounded number of comparisons at run
time (since the number of simultaneous memory references is unconstrained).
Figure 3.6 shows the impact of three other models of memory alias analysis, in
addition to perfect analysis. The three models are

1. Global/stack perfect—This model does perfect predictions for global and
stack references and assumes all heap references conflict. This model repre-
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Figure 3.6 The effect of varying levels of alias analysis on individual programs. Any-
thing less than perfect analysis has a dramatic impact on the amount of parallelism
found in the integer programs, and global/stack analysis is perfect (and unrealizable)
for the FORTRAN programs.
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sents an idealized version of the best compiler-based analysis schemes cur-
rently in production. Recent and ongoing research on alias analysis for
pointers should improve the handling of pointers to the heap in the future.

2. Inspection—This model examines the accesses to see if they can be deter-
mined not to interfere at compile time. For example, if an access uses R10 as
a base register with an offset of 20, then another access that uses R10 as a
base register with an offset of 100 cannot interfere, assuming R10 could not
have changed. In addition, addresses based on registers that point to different
allocation areas (such as the global area and the stack area) are assumed never
to alias. This analysis is similar to that performed by many existing commer-
cial compilers, though newer compilers can do better, at least for loop-
oriented programs.

3. None—All memory references are assumed to conflict.

As you might expect, for the FORTRAN programs (where no heap references
exist), there is no difference between perfect and global/stack perfect analysis.
The global/stack perfect analysis is optimistic, since no compiler could ever find
all array dependences exactly. The fact that perfect analysis of global and stack
references is still a factor of two better than inspection indicates that either
sophisticated compiler analysis or dynamic analysis on the fly will be required to
obtain much parallelism. In practice, dynamically scheduled processors rely on
dynamic memory disambiguation. To implement perfect dynamic disambigua-
tion for a given load, we must know the memory addresses of all earlier stores
that have not yet committed, since a load may have a dependence through mem-
ory on a store. As we mentioned in the last chapter, memory address speculation
could be used to overcome this limit.

Limitations on ILP for Realizable Processors

In this section we look at the performance of processors with ambitious levels of
hardware support equal to or better than what is available in 2006 or likely to be
available in the next few years. In particular we assume the following fixed
attributes:

1. Up to 64 instruction issues per clock with no issue restrictions, or roughly
10 times the total issue width of the widest processor in 2005. As we dis-
cuss later, the practical implications of very wide issue widths on clock
rate, logic complexity, and power may be the most important limitation on
exploiting ILP.

2. A tournament predictor with 1K entries and a 16-entry return predictor. This
predictor is fairly comparable to the best predictors in 2005; the predictor is
not a primary bottleneck.
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3. Perfect disambiguation of memory references done dynamically—this is
ambitious but perhaps attainable for small window sizes (and hence small issue
rates and load-store buffers) or through a memory dependence predictor.

4. Register renaming with 64 additional integer and 64 additional FP registers,
which is roughly comparable to the IBM Power5.

Figure 3.7 shows the result for this configuration as we vary the window size.
This configuration is more complex and expensive than any existing implementa-
tions, especially in terms of the number of instruction issues, which is more than
10 times larger than the largest number of issues available on any processor in
2005. Nonetheless, it gives a useful bound on what future implementations might

Window size
M Infinite
1256
|28

15 064

m32

Benchmarks

doduc

tomcatv

3 10 20 a0 40 s¢ 60
Instruction issues per cycle

Figure 3.7 The amount of parallelism available versus the window size for a variety
of integer and floating-point programs with up to 64 arbitrary instruction issues per
clock. Although there are fewer renaming registers than the window size, the fact that
all operations have zero latency, and that the number of renaming registers equals the
issue width, allows the processor to exploit parallelism within the entire window. In a
real implementation, the window size and the number of renaming registers must be
balanced to prevent one of these factors from overly constraining the issue rate.



3.3 Limitations on ILP for Realizable Processors 167

yield. The data in these figures are likely to be very optimistic for another reason.
There are no issue restrictions among the 64 instructions: They may all be mem-
ory references. No one would even contemplate this capability in a processor in
the near future. Unfortunately, it is quite difficult to bound the performance of a
processor with reasonable issue restrictions; not only is the space of possibilities
quite large, but the existence of issue restrictions requires that the parallelism be
evaluated with an accurate instruction scheduler. making the cost of studying pro-
cessors with large numbers of issues very expensive.

In addition, remember that in interpreting these results, cache misses and
nonunit latencies have not been taken into account, and both these effects will
have significant impact!

The most startling observation from Figure 3.7 is that with the realistic pro-
cessor constraints listed above, the effect of the window size for the integer pro-
grams is not as severe as for FP programs. This result points to the key difference
between these two types of programs. The availability of loop-level parallelism in
two of the FP programs means that the amount of ILP that can be exploited is
higher, but that for integer programs other factors—such as branch prediction,
register renaming, and less parallelism to start with—are all important limita-
tions. This observation is critical because of the increased emphasis on integer
performance in the last few years. Indeed, most of the market growth in the last
decade—transaction processing, web servers, and the like—depended on integer
performance, rather than floating point. As we will see in the next section, for a
realistic processor in 2005, the actual performance levels are much lower than
those shown in Figure 3.7.

Given the difficulty of increasing the instruction rates with realistic hardware
designs, designers face a challenge in deciding how best to use the limited
resources available on an integrated circuit. One of the most interesting trade-ofts
is between simpler processors with larger caches and higher clock rates versus
more emphasis on instruction-level parallelism with a slower clock and smaller
caches. The following example illustrates the challenges.

Example

Consider the following three hypothetical, but not atypical, processors, which we
run with the SPEC gcce benchmark:

1. A simple MIPS two-issue static pipe running at a clock rate of 4 GHz and
achieving a pipeline CPI of 0.8. This processor has a cache system that yields
0.0035 misses per instruction.

2. A deeply pipelined version of a two-issue MIPS processor with slightly
smaller caches and a 5 GHz clock rate. The pipeline CPI of the processor is
1.0, and the smaller caches yield 0.0055 misses per instruction on average.

3. A speculative superscalar with a 64-entry window. It achieves one-half of the
ideal issue rate measured for this window size. (Use the data in Figure 3.7.)
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This processor has the smallest caches, which lead to 0.01 misses per instruc-
tion, but it hides 25% of the miss penalty on every miss by dynamic schedul-
ing. This processor has a 2.5 GHz clock.

Assume that the main memory time (which sets the miss penalty) is 50 ns. Deter-
mine the relative performance of these three processors.

Answer  First, we use the miss penalty and miss rate information to compute the contribu-
tion to CPI from cache misses for each configuration. We do this with the follow-
ing formula:

Cache CPI = Misses per instruction X Miss penalty

We need to compute the miss penalties for each system:

Memory access time
Clock cycle

Miss penalty =

The clock cycle times for the processors are 250 ps, 200 ps, and 400 ps, respec-
tively. Hence, the miss penalties are

Miss penalty, = 255%288 = 200 cycles
Miss penalty, = 250%!;)88 = 250 cycles
Miss penalty; = %%ﬁ = 94 cycles

Applying this for each cache:

Cache CPI, = 0.005 x200=1.0
Cache CPI, = 0.0055 x250= 1.4
Cache CPI; =0.01 x 94 = 0.94

We know the pipeline CPI contribution for everything but processor 3; its pipe-
line CP1 is given by

Pipeline CPI, = — L _ L

Issucrate  9x05 45 0.2

Now we can find the CPI for each processor by adding the pipeline and cache
CPI contributions:

CPI;=08+1.0=1.38

CPL,=10+14=24

CPI;=0.22+094=1.16
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Since this is the same architecture, we can compare instruction execution rates in
millions of instructions per second (MIPS) to determine relative performance:

. . CR

{1 { t; = —
Instruction execution rate P
Instruction execution rate; = @;A—H—g = 2222 MIPS
Instruction execution rate, = 5—90—%24}17' = 2083 MIPS
Instruction execution rate; = %& = 2155 MIPS

In this example, the simple two-issue static superscalar looks best. In practice,
performance depends on both the CPI and clock rate assumptions.

Beyond the Limits of This Study

Like any limit study, the study we have examined in this section has its own limi-
tations. We divide these into two classes: limitations that arise even for the per-
fect speculative processor, and limitations that arise for one or more realistic
models. Of course, all the limitations in the first class apply to the second. The
most important limitations that apply even to the perfect model are

1.

WAW and WAR hazards through memory—The study eliminated WAW and
WAR hazards through register renaming, but not in memory usage. Although
at first glance it might appear that such circumstances are rare (especially
WAW hazards), they arise due to the allocation of stack frames. A called pro-
cedure reuses the memory locations of a previous procedure on the stack, and
this can lead to WAW and WAR hazards that are unnecessarily limiting. Aus-
tin and Sohi [1992] examine this issue.

Unnecessary dependences—With infinite numbers of registers, all but true
register data dependences are removed. There are, however, dependences
arising from either recurrences or code generation conventions that introduce
unnecessary true data dependences. One example of these is the dependence
on the control variable in a simple do loop: Since the control variable is incre-
mented on every loop iteration, the loop contains at least one dependence. As
we show in Appendix G, loop unrolling and aggressive algebraic optimiza-
tion can remove such dependent computation. Wall’s study includes a limited
amount of such optimizations, but applying them more aggressively could
lead to increased amounts of ILP. In addition, certain code generation con-
ventions introduce unneeded dependences, in particular the use of return
address registers and a register for the stack pointer (which is incremented
and decremented in the call/return sequence). Wall removes the effect of the
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return address register, but the use of a stack pointer in the linkage conven-
tion can cause “unnecessary’ dependences. Postitf et al. [1999] explored the
advantages of removing this constraint.

3. Overcoming the data flow limit—1f value prediction worked with high accu-
racy, it could overcome the data flow limit. As of yet, none of the more than
50 papers on the subject have achieved a significant enhancement in ILP
when using a realistic pradiction scheme. Obviously, perfect data value pre-
diction would lead to effectively infinite parallelism, since every value ol
every instruction could be predicted a priort.

For a less-than-perfect processor, several ideas have been proposed that could
expose more ILP. One example is to speculate along multiple paths. This idea
was discussed by Lam and Wilson [1992] and explored in the study covered in
this section. By speculating on multiple paths, the cost of incorrect recovery i-
reduced and more parallelism can be uncovered. It only makes sense to evaluate
this scheme for a limited number of branches because the hardware resources
required grow exponentially. Wall [1993] provides data for speculating in both
directions on up to eight branches. Given the costs of pursuing both paths, know-
ing that one will be thrown away (and the growing amount of useless computa-
tion as such a process is followed through multiple branches), every commercial
design has instead devoted additional hardware to better speculation on the cor-
rect path.

It is critical to understand that none of the limits in this section are fundamen-
tal in the sense that overcoming them requires a change in the laws of physics!
Instead, they are practical limitations that imply the existence of some formidable
barriers to exploiting additional 1LP. These limitations—whether they be window
size, alias detection, or branch prediction—represent challenges for designers
and researchers to overcome! As we discuss in Section 3.6, the implications of
ILP limitations and the costs of implementing wider issue seem to have created
effective limitations on ILP exploitation.

Crosscutting Issues: Hardware versus Software
Speculation

“Crosscutting Issues” is a section that discusses topics that involve subjects from
different chapters. The next few chapters include such a section.

The hardware-intensive approaches to speculation in the previous chapter and
the software approaches of Appendix G provide alternative approaches to
exploiting ILP. Some of the trade-offs, and the limitations, for these approaches
are listed below:

m To speculate extensively, we must be able to disambiguate memory refer-
ences. This capability is difficult to do at compile time for integer programs
that contain pointers. In a hardware-based scheme. dynamic run time disam-
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biguation of memory addresses is done using the techniques we saw earlier
for Tomasulo's algorithm. This disambiguation allows us to move loads past
stores at run time. Support for speculative memory references can help over-
come the conservatism of the compiler, but unless such approaches are used
carefully, the overhead of the recovery mechanisms may swamp the advan-
tages.

s Hardware-based speculation works better when control flow is unpredictable,
and when hardware-based branch prediction is superior to software-based
branch prediction doae at compile time. These properties hold for many inte-
ger programs. For example. a good static predictor has a misprediction rate of
about 16% for four major integer SPEC92 programs. and a hardware predic-
tor has a misprediction rate of under 10%. Because speculated instructions
may slow down the computation when the prediction is incorrect. this differ-
ence is significant. One result of this difference is that even statically sched-
uled processors normally include dynamic branch predictors.

» Hardware-based speculation maintains a completely precise exception model
even for speculated instructions. Recent software-based approaches have
added special support to allow this as well.

m Hardware-based speculation does not require compensation or bookkeeping
code, which is needed by ambitious software speculation mechanisms.

m Compiler-based approaches may benefit from the ability to see further in the
code sequence, resulting in better code scheduling than a purely hardware-
driven approach.

» Hardware-based speculation with dynamic scheduling does not require dif-
ferent code sequences to achieve good performance for different implementa-
tions of an architecture. Although this advantage is the hardest to quantify, it
may be the most important in the long run. Interestingly, this was one of the
motivations for the IBM 360/91. On the other hand, more recent explicitly
parallel architectures, such as IA-64, have added flexibility that reduces the
hardware dependence inherent in a code sequence.

The major disadvantage of supporting speculation in hardware is the com-
plexity and additional hardware resources required. This hardware cost must be
evaluated against both the complexity of a compiler for a software-based
approach and the amount and usefulness of the simplifications in a processor that
relies on such a compiler. We return to this topic in the concluding remarks.

Some designers have tried to combine the dynamic and compiler-based
approaches to achieve the best of each. Such a combination can generate interest-
ing and obscure interactions. For example, if conditional moves are combined
with register renaming, a subtle side effect appears. A conditional move that is
annulled must still copy a value to the destination register, since it was renamed
earlier in the instruction pipeline. These subtle interactions complicate the design
and verification process and can also reduce performance.
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Multithreading: Using ILP Support to Exploit
Thread-Level Parallelism

Although increasing performance by using ILP has the great advantage that it is
reasonably transparent to the programmer, as we have seen, ILP can be quite lim-
ited or hard to exploit in some applications. Furthermore, there may be significant
parallelisim occurring naturally at a higher level in the application that cannot be
exploited with the approaches discussed in this chapter. For example, an online
transaction-processing system has natural parallelism among the multiple querics
and updates that are presented by requests. These queries and updates can be pro-
cessed mostly in parallel, since they are largely independent of one another. Of
course, many scientific applications contain natural parallelism since they model
the three-dimensional, parallel structure of nature, and that structure can be
exploited in a simulation.

This higher-level parallelism is called thread-level parallelism (TLP) because
it is logically structured as separate threads of execution. A thread is a separate
process with its own instructions and data. A thread may represent a process that
is part of a parallel program consisting of multiple processes, or it may represent
an independent program on its own. Each thread has all the state (instructions,
data, PC, register state, and so on) necessary to allow it to execute. Unlike
instruction-level parallelism, which exploits implicit parallel operations within a
loop or straight-line code segment, thread-level parallelism is explicitly repre-
sented by the use of multiple threads of execution that are inherently parallel.

Thread-level parallelism is an important alternative to instruction-level paral-
lelism primarily because it could be more cost-effective to exploit than
instruction-level parallelism. There are many important applications where
thread-level parallelism occurs naturally, as it does in many server applications.
In other cases, the software is being written from scratch, and expressing the
inherent parallelism is easy, as is true in some embedded applications. Large.
established applications written without parallelism in mind, however, pose a sig-
nificant challenge and can be extremely costly to rewrite to exploit thread-level
parallelism. Chapter 4 explores multiprocessors and the support they provide for
thread-level parallelism.

Thread-level and instruction-level parallelism exploit two different kinds of
parallel structure in a program. One natural question to ask is whether it is possi-
ble for a processor oriented at instruction-level parallelism to exploit thread-level
parallelism. The motivation for this question comes from the observation that a
data path designed to exploit higher amounts of ILP will find that functional units
are often idle because of either stalls or dependences in the code. Could the paral-
lelism among threads be used as a source of independent instructions that might
keep the processor busy during stalls? Could this thread-level parallelism be used
to employ the functional units that would otherwise lie idle when insufficient
ILP exists”

Multithreading allows multiple threads to share the tunctional units of a single
processor in an overlapping fashion. To permit this sharing, the processor must
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duplicate the independent state of each thread. For example, a separate copy of
the register file, a separate PC, and a separate page table are required for each
thread. The memory itself can be shared through the virtual memory mecha-
nisms, which already support multiprograirming. In addition, the hardware must
support the ability to change to a different thread relatively quickly: in particular.
a thread switch should be much more efficient than a process switch, which typi-
cally requires hundreds to thousands of processor cycles.

There are two main approaches to multithreading. Fine-grained multithread-
ing switches between threads on each instruction, causing the execution of multi-
ple threads to be interleaved. This interlcaving is often done in a round-robin
fashion, skipping any threads that are stallzd at that time. To make fine-grained
multithreading practica:, the CPU must be able to switch threads on every clock
cycle. One key advantege of fine-grained multithreading is that it can hide the
throughput losses that arise from both short and long stalls, since instructions
from other threads can be executed when ons thread stalls. The primary disad-
vantage of fine-grained multithreading is that it slows down the execution of the
individual threads, since a thread that is ready to execute without stalls will be de-
layed by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls. such as level 2 cache misses. This change relieves the need to have thread-
switching be essentially free and is much less likely to slow the processor down,
since instructions from other threads will only be issued when a thread encoun-
ters a costly stall.

Coarse-grained multithreading suffers, however, from a major drawback: 1t is
limited in its ability to cvercome throughput losses, especially from shorter stalls.
This limitation arises from the pipeline start-up costs of coarse-grain multithread-
ing. Because a CPU with coarse-grained multithreading issues instructions from
a single thread, when a stall occurs, the pipeline must be emptied or frozen. The
new thread that begins executing after the stall must fill the pipeline before in-
structions will be able to complete. Because of this start-up overhead. coarse-
grained multithreading is much more useful for reducing the penalty of high-cost
stalls, where pipeline refill is negligible compared to the stall time.

The next subsection explores a variation on fine-grained multithreading that
enables a superscalar processor to exploit ILLP and multithreading in an integrated
and efficient fashion. Ir Chapter 4, we return to the issue of multithreading when
we discuss its integration with multiple CPUs in a single chip.

Simultaneous Multithreading: Converting Thread-Level
Parallelism into Instruction-Level Parallelism

Simultaneous multithreading (SMT) is & variation on multithreading that uses the
resources of a multiple issue, dynamically scheduied processor to exploit TLP at
the same time it exploits ILP. The key insight that motivates SMT is that modern
multiple-issue processors often have more functional unit parallelism available
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Superscalar

than a single thread can effectively use. Furthermore, with register renaming and
dynamic scheduling. multiple instructions from independent threads can be is-
sued without regard to the dependences among them: the resolution of the depen-
dences car be handled by the dynamic scheduling capability.

Figure 3.8 conceptually illustrates the differences in a processor’s ability to
exploit the resources of a superscalar for the following processor configurations:

m A superscalar with no mul:ithreading support
m A superscalar with coarse-grained multithreading
m A superscalar with fine-grained multithreading

m A superscalar with simultaneous multithreading

In the superscalar without multithreading support. the use of issue slots 1s
limited by a lack of ILP, a topic we discussed in earlier sections. In addition, «
major stall, such as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor
Although this reduces the number of completely idle clock cycles, within each
clock cycie, the ILP limitations still lead to idle cycles. Furthermore, in a coarse-
grained multithreaded processor. since thread switching only occurs when there
1s a stall and the new thread has a start-up period, there are likely to be some fully
idle cycles remaining.

Issue slots ——

Coarse MT Fine MT

e

Figure 3.8 How four different approaches use the issue slots of a superscalar processor.The horizontal dimen-
sion represents the instruction issue capability in each clock cycle. The vertical dimension represents a sequence of
clock cycles. An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. The
shades of grey and black correspond to four different threads in the multithreading processors. Black is also used to
indicate the occupied issue slots in the case of the superscalar without multithreading support. The Sun T1 (aka Nia-
gara) processor, which is discussed in the next chapter, is a fine-grained multithreaded architecture.
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In the fine-grained case, the interleaving of threads eliminates fully empty
slots. Because only one thread issues instructions in a given clock cycle, however,
ILP limitations still lead to a significant number of idle slots within individual
clock cycles.

In the SMT case, TLP and ILP are exploited simultaneously, with multiple
threads using the issue siots in a single clock cycle. Ideally, the issue slot usage is
limited by imbalances in the resource needs and resource availability over multi-
ple threads. In practice. other factors—inciuding how many active threads are
considered, finite limitations on buffers, the ability to fetch enough instructions
from multiple threads, and practical limitations of what instruction combinations
can issue from one thread and from multiple threads—can also restrict how many
slots are used. Although Figure 3.8 greatly simplifies the real operation of these
processors, it does illustrate the potential performance advantages of multithread-
ing in general and SMT in particular.

As mentioned earlier, simultaneous multithreading uses the insight that a dy-
namically scheduled processor already has many of the hardware mechanisms
needed to support the integrated exploitation of TLP through multithreading. In
particular, dynamically scheduled superscalars have a large set of virtual registers
that can be used to hold the register sets of independent threads (assuming sepa-
rate renaming tables are kept for each thread). Because register renaming pro-
vides unique register identifiers, instructions from multiple threads can be mixed
in the data path without confusing sources and destinations across the threads.

This observation leads to the insight that multithreading can be built on top
of an out-of-order processor by adding a per-thread renaming table, keeping
separate PCs, and previding the capabitity for instructions from multiple
threads to commit.

There are complications in handling instruction commit, since we would like
instructions from independent threads to be able to commit independently. The
independent commitment of instructions from separate threads can be supported
by logically keeping a separate reorder buffer for each thread.

Design Challenges in SMT

Because a dynamically scheduled superscalar processor is likely to have a deep
pipeline, SMT will be unlikely to gain much in performance if it were coarse-
grained. Since SMT makes sense only in a fine-grained implementation, we must
worry about the impact of fine-grained scheduling on single-thread performance.
This effect can be minimized by having a preferred thread, which still permits
multithreading to preserve some of its performance advantage with a smaller
compromise in single-thread performance.

At first glance, it might appear that a preferred-thread approach sacrifices nei-
ther throughput nor single-thread performance. Unfortunately, with a preferred
thread, the processor is likely to sacrifice some throughput when the preferred
thread encounters a stail. The reason is that the pipeline is less likely to have a
mix of instructions from several threads, resulting in greater probability that
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either empty slots or a stall will occur. Throughput is maximized by having a suf-
ficient number of independent threads to hide all stalls in any combination of
threads.

Unfortunately, mixing many threads will inevitably compromise the execution
time of individual threads. Similar problems exist in instruction fetch. To maxi-
mize single-thread performance, we should fetch as far ahead as possible in that
single thread and always have the fetch unit free when a branch is mispredicted
and a miss occurs in the prefetch buffer. Unfortunately, this limits the number of
instructions available for scheduling from other threads. reducing throughput. All
multithreaded processors must seek to balance this trade-off.

In practice, the problems of dividing resources and balancing single-thread
and multiple-thread performance turn out not to be as challenging as they sound,
at least for current superscalar back ends. In particular, for current machines that
issue four to eight instructions per cycle, it probably suffices to have a small num-
ber of active threads, and an even smaller number of “preferred” threads. When-
ever possible, the processor acts on behalf of a preferred thread. This starts with
prefetching instructions: whenever the prefetch buffers for the preferred threads
are not full, instructions are fetched for those threads. Only when the preferred
thread buffers are full is the instruction unit directed to prefetch for other threads.
Note that having two preferred threads means that we are simultaneously
prefetching for two instruction streams, and this adds complexity to the instruc-
tion fetch unit and the instruction cache. Similarly, the instruction issue unit can
direct its attention to the preferred threads, considering other threads only if the
preferred threads are stalled and cannot issue.

There are a variety of other design challenges for an SMT processor, includ-
ing the following:

s Dealing with a larger register file needed to hold multiple contexts

m Not affecting the clock cy:le, particularly in critical steps such as instruction
issue, where more candidate instructions need to be considered, and in
instruction completion, where choosing what instructions to commit may be
chajlenging

a  Ensuring that the cache and TLB conflicts generated by the simultaneous exe-
cution of multiple threads do not cause significant performance degradation

In viewing these problems, two observations are important. First, in many cases,
the potential performance overhead due to multithreading is small, and simple
choices work well enough. Second, the efficiency of current superscalars is low
enough that there is room for significant improvement, even at the cost of some
overhead.

The IBM Power5 used the same pipeline as the Power4, but it added SMT
support. In adding SMT, the designers found that they had to increase a num-
ber of structures in the processor so as to minimize the negative performance
consequences from fine-grained thread interaction. These changes included
the following:
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s Increasing the associativity of the L1 instruction cache and the instruction
address translation buffers

m Adding per-thread load and store queues

m Increasing the size of the L2 and L3 caches

m  Adding separate instruction prefetch and buffering

m Increasing the number of virtual registers from 152 to 240

a Increasing the size of several issue queues

Because SMT exploits thread-level parallelism on a multiple-issue supersca-
lar, it is most likely to be included in high-end processors targeted at server mar-
kets. In addition, it is likely that there will be some mode to restrict the
multithreading, so as to maximize the performance of a single thread.

Potential Performance Advantages from SMT

A key question is, How much performance can be gained by implementing SMT?
When this question was explored in 2000~2001, researchers assumed that dy-
namic superscalars would get much wider in the next five years, supporting six to
eight issues per clock with speculative dynamic scheduling, many simultaneous
loads and stores, large primary caches, and four to eight contexts with simulta-
neous fetching from multiple contexts. For a variety of reasons, which will be-
come more clear in the next section, no processor of this capability has been built
nor is likely to be built in the near future.

As a result, simulation research results that showed gains for multipro-
grammed workloads of two or more times are unrealistic. In practice, the existing
implementations of SMT offer only two contexts with fetching from only one, as
well as more modest issue abilities. The result is that the gain from SMT is also
more modest.

For example, in the Pentium 4 Extreme. as implemented in HP-Compaq serv-
ers, the use of SMT yields a performance improvement of 1.01 when running the
SPECintRate benchmark and about 1.07 when running the SPECfpRate bench-
mark. In a separate study, Tuck and Tullsen [2003] observe that running a mix of
each of the 26 SPEC benchmarks paired with every other SPEC benchmark (that
is, 262 runs, if a benchmark is also run opposite itself) results in speedups ranging
from 0.90 to 1.58, with an average speedup of 1.20. (Note that this measurement
is different from SPECRate, which requires that each SPEC benchmark be run
against a vendor-selected number of copies of the same benchmark.) On the
SPLASH parallel benchmarks, they report multithreaded speedups ranging from
1.02 to 1.67, with an average speedup of about 1.22.

The IBM PowerS is the most aggressive implementation of SMT as of 2005
and has extensive addirions to support SMT, as described in the previous subsec-
tion. A direct performance comparison of the Power5 in SMT mode, running two
copies of an application on a processor, versus the Powers in single-thread mode,
with one process per core, shows speedup across a wide variety of benchmarks of
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between 0.89 (a performance ioss) to 1.41. Most applications, however, showed
at least some gain from SMT: floating-point-intensive applications, which suf-
fered the most cache conflicts, showed the least gains.

Figure 3.9 shows the speedup for an 8-processor Power5 multiprocessor with
and without SMT for the SPECRate2000 benchmarks, as described in the cap-
tion. On average, the SPECintRate is 1.23 times faster, while the SPECfpRate is
1.16 times faster. Note that a few floating-point benchmarks experience a slight
decrease in performance in SMT mode, with the maximum reduction in speedup
being 0.93.
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Figure 3.9 A comparison of SMT and single-thread (ST) performance on the 8-processor IBM eServer p5 575.
Note that the y-axis starts at a speedup of 0.9, a performance loss. Only one processor in each Power5 core is active,
which should slightly improve the results from SMT by decreasing destructive interference in the memory system.
The SMT results are obtained by creating 16 user threads, wnile the ST results use only 8 threads; with only one
thread per processor, the Power5 is switched to single-threaced mode by the OS. These results were collected by
John McCalpin of IBM. As we can see from: the data, the standard deviation of the results for the SPECfpRate is higher
than for SPECintRate (0.13 versus 0.07), indicating that the SMT improvement for FP programs is likely to vary widely.
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These results ciearly show the benefit of SMT for an aggressive speculative
processor with extensive support for SMT. Because of the costs and diminishing
returns in performance, however, rather than implement wider superscalars and
more aggressive versicns of SMT, many designers are opting to implement multi-
ple CPU cores on a single die with slightly less aggressive support for multiple
issue and multithreading; we return to this topic in the next chapter.

CX Putting It All Together: Performance and Efficiency
in Advanced Multiple-Issue Processors '
(n this section, we discuss the characteristics of several recent multiple-issue pro-
cessors and examine their performance and their efficiency in use of silicon, tran-
sistors, and energy. We then turn to a discussion of the practical limits of
superscalars and the future of high-performance microprocessors.

Figure 3.10 shows the characteristics of four of the most recent high-
performance microprocessors. They vary widely in organization, issue rate, func-
tional unit capability, clock rate, die size. ransistor count, and power. As Figures
3.11 and 3.12 show. taere is no obvious overall leader in performance. The Ita-
nium 2 and PowerS, which perform similarly on SPECfp, clearly dominate the
Athlon and Pentium 4 on those benchmarks. The AMD Athlon leads on SPECint
performance followed by the Pentium 4, Itanium 2, and Powers5.

Fetch/ Clock
issue/ Func. rate Transistors
Processor Microarchitecture axecute units (GHz) and die size Power
Intel Speculative dynamically 3/3/4 7 int. 38 125M 115W
Pentium 4 Extreme  scheduled; deeply 1 FP 122 mm?
pipelined; SMT
AMD Athlon 64 Speculative dynamically 3/3/4 6 int. 2.8 114M 104 W
FX-57 scheduled 3 FP 115 mm?
IBM Power5 Speculative dynamically 8/4/8 6 int. 1.9 200M 80 W
I processor scheduled; SMT; two CPU 2 FP 300 mm? (estimated)
cores/chip (estimated)
Intel EPIC style; primarily 6/5/11 9 int. 1.6 592M 130 W
Itanium 2 statically scheduled 2FP 423 mm?

Figure 3.10 The characteristics of four recent multiple-issue processors. The Power5 includes two CPU cores,
although we only look at the performance of one core in this chapter. The transistor count, area, and power con-
sumption of the Power5 are estimated for one core based on two-core measurements of 276M,389 mm?,and 125 W,
respectively. The large die and transistor count for the Itanium 2 is partly driven by a 9 MB tertiary cache on the chip.
The AMD Opteron and Athlon both share the same core microarchitecture. Athlon is intended for desktops and does
not support multiprocessing; Opteron is intended for servers and does. This is similar to the differentiation between
Pentium and Xeon in the Intel product line.
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Figure 3.13 Efficiency measures for four muitiple-issue processors. in the case of
Powers, a single die includes two processor cores, so we estimate the single-core met-
rics as power = 80 W, area = 290 mm?, and transistor count = 200M.

As important as overall performance is. the question of efficiency in terms of
silicon area and power is equally critical. As we discussed in Chapter 1, power
has become the major constraint on modern processors. Figure 3.13 shows how
these processors comparz in terms of efficiency, by charting the SPECint and
SPECfp performance versus the transistor count, silicon area, and power. The
results provide an interesting contrast to the performance results. The Itanium 2
is the most inefficient processor both for floating-point and integer code for all
but one measure (SPECfp/watt). The Athlon and Pentium 4 both make good use
of transistors and area in terms of efficiency. while the IBM Power5 is the most
effective user of energy on SPEC{p and essentially tied on SPECint. The fact that
none of the processors offer an overwhelming advantage in efficiency across mul-
tiple measures leads us to believe that none of these approaches provide a “silver
bullet” that will allow the exploitation of JLP to scale easily and efficiently much
beyond current levels.

Let’s try to understand why this is the case.

What Limits Multiple-lssue Processors?

The limitations explored in Sections 3.1 and 3.3 act as significant barriers to
exploiting more 1L.P. but they are not the only barriers. For example, doubling the
issue rates above the current rates of 3-6 instructions per clock, say, to 6-12
instructions, will probably require a processcr to issue three or four data memory
accesses per cycle, resolve two or three branches per cycle, rename and access
more than 20 registers per cycle, and fetch 12-24 instructions per cycle. The
complexities of implementing these capabilities is likely to mean sacrifices in the
maximum clock rate. For example, the widest-issue processor in Figure 3.10 is
the ltanium 2, but it also has the slowest clock rate, despite the fact that it con-
sumes the most powver!
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It is now widely accepted that modern microprocessors are primarily power
limited. Power is a function of both static power, which grows proportionally 1o
the transistor count (whether or not the transistors are switching), and dynamic
power, which is proportional to the product of the number of switching transis-
tors and the switching rate. Although static power is certainly a design concern,
when operating, dynamic power is usually the dominant energy consumer. A
microprocessor trying to achieve both a low CPI and a high CR must switch mos:
transistors and switch them faster, increasing the power consumption as the prod-
uct of the two.

Of course, most techniques for increasing performance, including multiple
cores and multithreading, will increase power consumption. The key question s
whether a technique is energy efficient: Does it increase power consumption
faster than it increases performance? Unfortunately, the techniques we currently
have to boost the performance of multiple-issue processors all have this inefhi-
ciency, which arises from two primary characteristics.

First, issuing multiple instructions incurs some overhead in logic that grows
faster than the issue rate grows. This logic is responsible for instruction issue
analysis, including dependence checking, register renaming, and similar func-
tions. The combined result is that, without voltage reductions to decrease power,
lower CPlIs are likely to lead to lower ratios of performance per watt, simply due
to overhead.

Second, and more important, is the growing gap between peak issue rates and
sustained performance. Since the number of transistors switching will be propor-
tional to the peak issue rate, and the performance is proportional to the sustained
rate, a growing performance gap between peak and sustained performance trans-
lates to increasing energy per unit of performance. Unfortunately, this growing
gap appears to be quite fundamental and arises from many of the issues we dis-
cuss in Sections 3.2 and 3.3. For example, if we want to sustain four instructions
per clock, we must ferch more, issue more, and initiate execution on more than
four instructions. The power will be proportional to the peak rate, but perfor-
mance will be at the sustaired rate. (In many recent processors, provision has
been made for decreasing power consumption by shutting down an inactive por-
tion of a processor, including powering off the clock to that portion of the chip
Such techniques, while useful, cannot prevent the Jong-term decrease in power
efficiency.)

Furthermore, the most important technique of the last decade for increasing
the exploitation of ILP—namely, speculation—is inherently inefficient. Why”
Because it can never be perfect; that is, there is inherently waste in executing
computations before we know whether they advance the program

If speculation were perfect, it could save power, since it would reduce the
execution time and save stat.c power, while adding some additional overhead to
implement. When speculation is not perfect, it rapidly becomes energy inefti-
cient, since it requires additional dynamic power both for the incorrect specula-
tion and for the resetting of the processor state. Because of the overhead of
implementing speculation—register renaming, reorder buffers, more registers
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and so on—it is unlikely that any speculative processor could save energy for a
significant range of realistic programs.

What about focusinz on improving clock rate? Unfortunately, a similar
conundrum applies to atiempts to increase clock rate: increasing the clock rate
will increase transistor switching frequencv and directly increase power con-
sumption. To achieve a faster clock rate, we would need to increase pipeline
depth. Deeper pipelines, however. incur additional overhead penalties as well as
causing higher switching rates.

The best example of this phenomenon comes from comparing the Pentium 111
and Pentium 4. To a first approximation, the Pentium 4 is a deeply pipelined ver-
sion of the Pentium III architecture. In a similar process, it consumes roughly an
amount of power proportional to the difference in clock rate. Unfortunately., its
performance is somewhet less than the ratio of the clock rates because of over-
head and ILP limitations

It appears that we have reached—and. in some cases, possibly even sur-
passed—the point of diminishing returns in our attempts to exploit ILP. The
implications of these limits can be seen over the last few years in the slower per-
formance growth rates (see Chapter 1), in the lack of increase in issue capability,
and in the emergence of multicore designs; we return to this issue in the conclud-
ing remarks.

Fallacies and Pitfalls

There is a simple approach to multiple-issue processors that yields high perfor-
mance without a significant investment in silicon area or design complexity.

The last few sections should have made this point obvious. What has been sur-
prising is that many designers have believed that this fallacy was accurate and
committed significant effort to trying to find this “silver bullet” approach.
Although it is possible to build relatively simple multiple-issue processors, as
issue rates increase, diminishing returns appear and the silicon and energy costs
of wider issue dominate the performance gains.

In addition to the hardware inefficiency. it has become clear that compiling
for processors with significant amounts of ILP has become extremely complex.
Not only must the compiler support a wide set of sophisticated transformations,
but tuning the compiler to achieve good performance across a wide set of bench-
marks appears to be very difficult.

Obtaining good performance is also affected by design decisions at the sys-
tem level, and such choices can be complex, as the last section clearly illustrated.

Improving only one aspe:t of a multiple-issue processor and expecting overall per-
formance improvement.
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3.8

This pitfail is simply a restatement of Amdahl’s Law. A designer might simply
look at a design, see a poor branch-prediction mechanism, and improve it
expecting to see significant performance improvements. The difficulty is thal
many factors limit the performance of multiple-issue machines, and improving
one aspect of a processor often exposes some other aspect that previously did not
limit performance.

We can see examples of this in the data on ILP. For example, looking just at
the effect of branch prediction in Figure 3.3 on page 160, we can see that going
from a standard 2-bit predictor to a tournament predictor significantly improves
the parallelism in espresso (from an issue rate of 7 to an issue rate of 12). If the
processor provides only 32 registers for renaming, however, the amount of paral-
lelism is limited to 5 issues per clock cycle, even with a branch-prediction
scheme better than either alternative.

Concluding Remarks

The relative merits of software-intensive and hardware-intensive approaches tc
exploiting ILP continue to te debated, although the debate has shifted in the
last five years. Initially, the software-intensive and hardware-intensive
approaches were quite different, and the ability to manage the complexity of
the hardware-intensive approaches was in doubt. The development of several
high-performance dynamic speculation processors, which have high clock
rates, has eased this concern.

The complexity of the [A-64 architecture and the Itanium design has signaled
to many designers that it 1s unlikely that a software-intensive approach will pro-
duce processors that are significantly faster (especially for integer code), smalles
(in transistor count or die siz2), simpler, or more power efficient. It has become
clear in the past five years that the [A-64 architecture does not represent a signifi-
cant breakthrough in scaling ILP or in avoiding the problems of complexity and
power consumption in high-performance processors. Appendix H explores this
assessment in more detail.

The limits of complexity and diminishing returns for wider issue probably
also mear that only limited use of simultaneous multithreading is likely. 1t sim-
ply is not worthwhile to build the very wide issue processors that would justity
the most aggressive implementations of SMT. For this reason, existing designs
have used modest, two-context versions of SMT or simple multithreading with
two contexts, which is the appropriate choice with simple one- or two-issue
processors.

Instead of pursuing more ILP, architects are increasingly focusing on TLP
implemented with single-chip multiprocessors, which we explore in the next
chapter. In 2000, IBM announced the first commercial single-chip, general-pus-
pose multiprocessor, the Power4, which contains two Power3 processors and an
integrated second-level cache. Since then. Sun Microsystems. AMD. and Intel
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have switched to a focus on single-chip rultiprocessors rather than more aggres-
SIVe Uniprocessors.

The question of the right balance of IL.P and TLP is still open in 2005, and
designers are exploring the full range of options, from simple pipelining with
more processors per chip, to aggressive iLP and SMT with fewer processors. It
may well be that the right choice for the server market, which can exploit more
TLP, may difter trom the desktop. where single-thread performance may con-
tinue to be a primary requirement. We retirn to this topic in the next chapter.

Historical Perspective and References

Section K.4 on the cempanion CD teatures a discussion on the development of
pipelining and instruction-level parallelisn:. We provide numerous references for
further reading and exploration of these tapics.

Case Study with Exercises by Wen-mei W. Hwu and
John W. Sias

Concepts illustrated by this case study

s Limited IL.P due to software dependences
®  Achievabie ILP with hardware resource constraints
w  Variability of ILP due to software and hardware interaction

m Tradeoffs in ILP techmiques at compilz time vs. execution time

Case Study: Dependences and Instruction-Level Parallelism

The purpose of this case study is to demcnstrate the interaction of hardware and
software factors in producing instruction-ievel parallel execution. This case study
presents a concise code example that concretely illustrates the various limits on
instruction-level parallelism. By working with this case study, you will gain intu-
ition about how hardware and software factors interact to determine the execution
time of a particular type of code on a given system.

A hash table is a popular data strucrare for organizing a large collection of
data items so that one can quickly answer guestions such as. “Does an element of
value 100 exist in the collection” This 15 done by assigning data elements into
one of a large number of buckets according to a hash function value generated
tfrom the data values. The data items in each bucket are typically organized as a
linkad list sorted according to o given order. A lookup of the hash table starts by
determining the buckat that corresponds to the data value in question. It then
traverses the linked list of data elements in the bucket and checks if any element
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in the list has the value in question. As long as one keeps the number of data cle-
ments in each bucket small, the search result can be determined very quickly.

The C source code in Figure 3.14 inserts a large number (N_ELEMENTS) of
elements into a hash table, whose 1024 buckets are all linked lists sorted in
ascending crder according to the value of the elements. The array element(]
contains the elements to be inserted, allocated on the heap. Each iteration of the
outer (for) loop, starting at line 6, enters one element into the hash table.

Line 9 in Figure 3.14 calculates hash_index, the hash function value, from
the data value stored in element [1]. The hashing function used is a very simple

1 typedef struct Element {

2 int value;

3 struct Element *next;

4 } Element;

5 Element element[N _ELEMENTS], *bucket[1024];

/* The array element is initialized with the items to be inserted;
the pointers in the array bucket are initialized to NULL. */

6 for (i = 0; i < N_ELEMENTS; i++)
{
7 Element *ptrCurr, **ptrUpdate;
int hash_index;

/* Find the location at which the new element is to be inserted. */

9 hash_index = element[i].value & 1023;
10 ptrUpdate = &bucket[hash_index];
11 ptrCurr = bucket[hash_index];

/* Find the place in the chain to insert the new element. */
12 while (ptrCurr &%
13 ptrCurr->value <= element[i].value)
14 {
15 ptrUpdate = &ptrCurr->next:;
16 ptrCurr = ptrCurr->next;

}

/* Update pointers to insert the new element into the chain. */
17 element[i].next = *ptripdate;
18 *ptrUpdate = &element[i];

}

Figure 3.14 Hash table code example.
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one: it consists of the least significant 10 bits of an element’s data value. This is
done by computing the bitwise logical AND of the element data value and the
(binary) bitmask 11 1:11 1111 (1023 in decimal).

Figure 3.15 illustrates the hash table data structure used in our C code exam-
ple. The bucket array on the left side of Figure 3.15 is the hash table. Each entry
of the bucket array contains a pointer to the linked list that stores the data ele-
ments in the bucket. If bucket i is currentlv empty, the corresponding bucket [i]
entry contains a NULL »ointer. In Figure 3.15, the first three buckets contain one
data element each: the other buckets are empty.

Variable ptrCurr contains a pointer used to examine the elements in the
linked list of a bucket. At Line 11 of Figure 3.14, ptrCurr is set to point to the
first element of the linked list stored in the given bucket of the hash table. If the
bucket selected by the hash _index is empty, the corresponding bucket array
entry contains a NULL pointer.

The while loop starts at line 12. Line 12 tests if there is any more data ele-
ments to be examined by checking the contents of variable ptrCurr. Lines 13
through 16 will be skipped if there are no more elements to be examined, either
because the bucket is 2mpty, or because all the data elements in the linked list
have been examined by previous iterations of the while loop. In the first case, the
new data element will »e inserted as the first element in the bucket. In the second
case. the new element will be inserted as the last element of the linked list.

In the case where there are still more ¢lements to be examined, line 13 tests if
the current linked list element contains a value that is smaller than or equal to that
of the data element to be inserted into the hash table. If the condition is true, the
while loop will continue to move on to the next element in the linked list; lines
15 and 16 advance to tae next data element of the linked list by moving ptrCurr
to the next element in the linked list. Otherwise, it has found the position in the

buc<et value next
O —~———_I element [0}
——--——i element [1]
_— — i element {2]
4 L
1024 —_I

Figure 3.15 Hash table data structure.
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3.

Iinked hist where the new data clenein shoutd
terminate and the new data cement vall be mseited night betore the element
pointed 1o by vtrCurr,

The vanable ptripdatedentines the porider that mast be updated 1o order (o
mnsert the new data element into the bucket. ft is set by hue 10 to poiit to the

Sauscraid dnsoenibe loup wall

bucket entry. It the bucket is empty, the while loop wili be skippad altogethe
and the new daia eclement s inserted by chunging  the  poiater s
bucket{hash index] from NLLL io the address of the new daa element by dine
18. Atfter the while loop, ptripdate pomts to the polidei that must be npdated
tor the new element to be mseried mito the appropriate bucket

After the execution exits tw whiie loop. lines 17 and 18 suash the job o
inserting the new data element into the inked hist. In the case vwiere the buckeo
empty, ptripdate wili point io bucket|hash ndex}. winch contains a NULL
pointer. Line 17 will then assign that NJLL potnter w0 the next poinier of the now
data element. Line I8 changes tucher{hash tabie] t. puint o the pew duin
element. [n the case where the new duta clement 15 sinalier tha afl elements
the hinked list, ptrUpdate will also pomt to bucket [hash tablef.
to the first eleraent of the hinked Tist. In this case, ilue |7 assigns tw pointer b the

wh porty

first elemient of the linked list to the neat pointer of the new date stincture

In the case where the new data clenent s greater than some of the Hokaed b
elements but smaller thau the others, ptrlpdate will point to the next pointer of
the element after which the new data element will be inseried. In this case. tine 17
makes the new data element to potut wo the element right after the fnsertion poiat
Line 18 mekes the onginal data eleraent nght betore the isertion point to poms
to the new data element. The readei should verity that the code works correcth
when the new data element is to be iserted to the end ot the hinked fist

Now that we have a good undesstanding of the C code, we will proceed wiik
analvzing the amoant of mstruction level parallelism available i this plece o
code,
[25/0S7VO/1S/20°20015) <2 00 220 3 2 33 App. He Tits patl of i Cose st
will focus on the amount of instruction kevel parallelisan avatlable w the run rime
hardware »cheduler under the most favorable execution scenaiios (the wdeal
case). (Latero we will consider less 1eeal scenartos for the un time hardware
scheduler as well as the amount of parailelism avaitable f¢a compiler scheduler
For the tdeal scenario, assume that the hash abie s nitialls cmpty. Suppose there
are 1024 new data elements. whose values are nambered sequentiatly from 0w
10230 so that cach goes in s owan bucket (this reduces the problenn o a matter o
updating kiown array focations !y Frgure 3085 shows the hush table caments atie
the first three elements have been inserted. according to this “ideal case” Sties
the valuae oF o st 10 snaply 1oin ths ddeat casel each element i
inserted it it own bucket.

For the pumoses of this case study - assitiite it e it cd o sa frgae 3 03
takes nne execution cycle (its dependence beight is 1) wnd Toc thie purposes o
computiig [L¥ iakes one instiaction. These (un-ealistiv) assuiptions are made
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to greatly simphify bookkeeping in solviag the following exercises. Note that the
for and while statements execute on each iteration of their respective loops, to
test if the loop should continue. In this ideal case. most of the dependences in the
code sequence are relaxed and a high degree of ILP is therefore readily available.
We will later examine a general case, in which the realistic dependences in the
code segment reduce the amount of paralielism available.

Further suppose that the code is executed on an “ideal” processor with infinite
issue width, unhimited renaming, “omniscient” knowledge of memory access dis-
ambiguation, branch prediction. and so on, so that the execution of instructions is
limited only by data dependence. Consider the following in this context:

a.

i25] <2.1>> Describe the data (true, anti, and output) and control dependences
that govern the parallelism of this code segment, as seen by a run time hard-
ware scheduler. Indicate only the acrual dependences (i.e., ignore depen-
dences between s:ores and loads that access different addresses, even if a
compiler or processor would not realistically determine this). Draw the
dynamic dependence graph for six consecutive iterations of the outer loop
(for insertion of six elements), under the ideal case. Note that in this dynamic
dependence graph, we are identifyinz data dependences between dynamic
mstances of instructions: each static instruction in the original program has
multiple dynamic instances due to loop execution. Hint: The following defi-
nitions may help you find the dependences related to each instruction:

w  Data true dependence: On the results of which previous instructions does
each wstruction immediately depend?

w Data antidependence: Which nstructions subsequently write locations
read by the instruction?

w  Datu output dependence: Which instructions subsequently write locations
written by the :nstruction?

m  Control dependence: On what previous decisions does the execution of a
particular instriction depend (in what case will it be reached)?

[15] <2.1> Assuming the ideal case just described, and using the dynamic
dependence graph you just constructed. how many instructions are executed,
and in how many cycles?

[10] <3.2> What i the average level of ILP available during the execution of
the for loop?

[15) <2.2. App. H> In part (c) we considered the maximum parallelism
achievable by a run-time hardware scheduler using the code as written. How
could a compiler increase the available parallelism, assuming that the com-
piler knows that it is dealing with the ideal case. Hint: Think about what is
the primary constraint that prevents executing more iterations at once in the
ideal case. How can the loop be restructured to relax that constraint?
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3.2

e. [25] <3.2. 3.3> For simplicity. assume that only variables 1. hash index.
ptrCurr, and ptrUpdate need to occupy registers. Assuming geaeral renam-
ing, how many registers are necessary to achieve the maximum achievable
parallelism in part (b)?

f. [25] <3.3> Assume that in your answer to part (a) there are 7 instructions in
each iteration. Now, assuring a consistent steady-state schedule of the
instructions in the example and an issue rate of 3 instructions per cycle, how
is execuiion time affected?

g. [15] <3.3> Finally. calculate the minimal instruction window size needed to
achieve the maximal level of parallelism.

[1S5/15/15110/10/15/15/10/10/1C/25) «<2.1. 3.2, 3.3> Let us now consider less
favorable scenarios for extraction of instruction-level parallelism by a run-time
hardware scheduler in the hash table code in Figure 3.14 (the general case). Sup-
pose that there is no longer a guarantee that each bucket will receive exactly one
item. Let u- reevaluate our assessment of the parallelisin available, given the
more realistic situation. which adds some additional. important dependences.

Recall that :n the ideal case. the relatively serial inner loop was not in play, and
the outer loop provided ample parallelism. In general. the inner loop is in play:
the inner while loop could iterate one ot more times. Keep in mind that the innet
loop. the while Joop. has only a limited amount of instruction-level parallelism.
First of all. cach iteration of the while loop depends on the result of the previous
iteration. Second. within each iteration. only a small number of instructions are
executed.

The outer loop is. on the contrary. quite parallel. As long as two elements of the
outer loop are hashed into diftferent buckets. they can be entered in parallel. Even
when they «re hashed to the saime bucket. they can still go in parallel as long as
some tvpe ¢f memory disambiguation enforces correctness of memory loads and
stores performed on behalt of each element.

Note that in reality, the data element values will likely be randomly distributed.
Although we aim to provide the reader insight into more realistic execution sce
narios, we will begin with some reguiar but nonideal data value patierns that are
amenable 1¢ svstematic analys's. These value patterns offer some intermediatc
steps toward understanding the amount of instruction-level parallelism under the
most generzl. random data values.
a. [15] <2 !> Draw a dynamic dependence graph tor the hash table code in
Figure 5.14 when the values of the 1024 data elements to be inserted are (.
1. 1024, 1025.2048, 2049, 3072. 3073, . . .. Describe the new dependences
across iterations for the for loop when the while loop is iterated one or
more times. Pay special attention to the fact that the inner while loop now
can iterate one or more times. The number of instructions in the outer for
loop wiil therefore likely vary as it iterates. For the purpose of determining
dependences between loads and stores, assume a dvnamic memory disam-
biguaticn that cannot resolve the dependences between two memory
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accesses based on difterent base pointer registers. For example. the run time
hardware cannot disambiguate between a store based on ptrUpdate and a
load based on ptrCurr.

[15] <2.1> Assuming the dvnamic dependence graph you derived in part (a).
how many instructions will be executed?

[15] <2.1> Assuming the dynamic dependence graph you derived in part (a)
and an unlimited amount of hardwure resources, how many clock cycles will
it take to execute all the instructions vou calculated in part (b)?

[10] <2.1:> How much instruction-level paralielism is available in the
dynamic dependence graph you derived in part (a)?

[10] <2.1. 3.2> Using the same assumption of run time memory disambigua-
tion mechanism as in part (a), identifv a sequence of data elements that will
cause the worst-cese scenario of the way these new dependences affect the
level of parallelism available.

[[5] <2.1. 3.2> New, assume the worsi-case sequence used in part (e), explain
the potential effect of a perfect run time memory disambiguation mechanism
(i.e.. a system that tracks all outstanding stores and allows all nonconflicting
loads to proceed). Derive the number of clock cycles required to execute all
the instructions in the dynamic dependence graph.

On the basis of what you have learned so far. consider a couple of qualitative
questions: What 1s the effect of allowing loads to issue speculatively, betore
prior store addresszs are known? How does such speculation atfect the signit-
icance of memory latency in this code?

[15] <2.1. 3.2» Continue the same assumptions as in part (f). and calculate
the number of inst-uctions executed.

[10] <2.1. 3.2 Continue the same assumptions as in part (f). and calculate
the amount ot instruction-level parallelism available to the run-time hard-
ware.

[10] <2.1. 3 2> In part (h). what 15 the effect of limited instruction window
sizes on the tevel of instruction-level parallelism?

[10] <3.2. 3.3> Now, continuing to consider your solution to part (h).
describe the cause of branch-predicticn misses and the effect of each branch
prediction on the level of paraliehsm available. Reflect briefly on the implica-
tions for power arnd efficiency. What are potential costs and benefits to exe-
cuting many off-path speculative instructions (i.c.. initiating execution of
instructions that will later be squashed by branch-misprediction detection)?
Hint: Think abouw the effect or the execution of subsequent insertions of
mispredicting the number of elements before the insertion point.

[25] <3> Consider the concept of a static dependence graph that captures all
the worst-case dependences for the purpose ot constraining compiler schedul-
ing and optimizaton. Draw the static dependence graph for the hash table
code shown in Figure 3.14.
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Compare the static dependence graph with the various dynamic dependence
graphs drawn previously. Reflect in a paragraph or two on the implications of
this comparison for dynamic and static discovery of instruction-level parallel-
ism in this example’s hash table code. In particular, how is the compiler con-
strained by having to consistently take into consideration the worst case,
where a hardware mechanism might be free to take advantage opportunisti-
cally of fortuitous cases? What sort of approaches might help the compiler to
make better use of this code?
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